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ABSTRACT 

A detailed discussion is presented for a software tool 
developed to conduct interplanetary mission design 
trade studies and to identify optimum mission 
parameters.   The Interplanetary Design Framework 
Software (IDFS) code supports these trade studies by 
determining optimum interplanetary missions using a 
diverse set of user inputs.  A Graphical User Interface 
accepts trade parameters selected from the IDFS 
database or from direct user input.   Both graphical and 
tabular output is provided.  IDFS core components 
include: (i) Launch vehicle performance calculation, 
(ii) Planetary ephemeris propagation, (iii) Planetary 
position and velocity vector computation, (iv) 
Interplanetary trajectory determination, (v) Delta 
velocity calculation, (vi) Usable payload mass and time 
of flight computation, and (vii) Optimization of delta 
velocity, usable payload mass, and time of flight using 
Multidisciplinary Design Optimization (MDO) 
techniques.  Benchmarking results are also presented. 
Finally, IDFS is utilized to identify an optimum 
interplanetary mission and the trade results are 
presented, discussed, and evaluated. 

1. INTRODUCTION 
Not since the Apollo Program of the late 1960s and 
early 1970s has there been such an earnest effort to 
place men on the surface of a distant body.  This is due 
in large part to President George W. Bush’s 2004 
announcement of an initiative to explore Mars via a 
permanent Moon base [1].  The President’s proposal, in 
conjunction with the recent backing of Congress, 
places both manned and unmanned interplanetary 
travel at the forefront of future space endeavors [2]. 

In parallel with the renewed interest in interplanetary 
exploration, the MDO technique has continued to come 
to the forefront as a formal method used in the design 
of complex systems.  MDO allows the effects of 
coupling between various interacting design variables 
to be numerically explored and the sensitivity of a 
design to each factor to be investigated. 

Several numerical MDO methods currently exist and 
are well documented in the public domain.  Further, 
there exists a serious worldwide effort to expand MDO 
technology and theory.  For example, the AIAA has 

formed a technical committee to act as a forum for 
those active in development, application, and teaching 
of MDO.  Similarly, NASA-Langley has an MDO 
branch whose mission is to lead in the identification, 
development, and demonstration of MDO methods. 

While the Moon and Mars are the current focus of 
NASA planning, several other possible interplanetary 
missions are also of extreme interest.  Saturn’s moons 
Enceladus and Titan and Jupiter’s moon Europa are of 
particular significance due to the likely presence of 
liquid water on the surface of those bodies [3].  As 
Jupiter is the closest of the outer planets, robotic “Mars 
like” missions to explore that planet and her many 
intriguing satellites must also be seriously considered. 

Motivated by the heightened interest in interplanetary 
missions, the myriad of other possible high value 
interplanetary missions, and the rise of MDO, a 
software tool has been developed.  The tool, known as 
IDFS, enables first order analysis of interplanetary 
mission design trade studies to be conducted efficiently 
and accurately.  In addition, IDFS uses MDO methods 
to allow the complex trade space of interplanetary 
missions to be readily evaluated numerically.   

2. BACKGROUND 
The IDFS tool, whose high level flow is illustrated by 
Figure 1, is a MATLAB® based software program. 
IDFS is principally comprised of a mathematical model 
that determines a series of transfer orbit trajectories 
from Earth to any planet in the solar system across a 
user specified launch and arrival day windows. The 
corresponding departure and arrival ΔVs, departure and 
arrival propellant requirements, launch and arrival 
dates, and the resulting Payload System Mass (PSM) 
are computed for each unique trajectory.  The results 
produced by this model are then analyzed, using the 
Simplex and Matrix Experiment MDO techniques, to 
identify the most advantageous case.  The optimum 
case identified is a function of the user inputs and 
which of the six optimization options identified below 
is selected by the user.   

• Find maximum Payload Systems Mass 
• Find minimum Time of Flight 
• Goalseek Payload System Mass 



 

•	 Goalseek Time of Flight 
•	 Find minimum Time of Flight for a given Payload 

System Mass 
•	 Optimize Low Earth Orbit Altitude for Maximum 

Payload System Mass 

2.1. METHODOLGY 
At a high level, IDFS uses a MATLAB® mathematical 
model to calculate launch vehicle performance, 
determine planetary positions, identify interplanetary 
trajectories, compute ΔVs, derive propellant and 
payload system masses, and determine of the resulting 
optimum mission as outlined below: 

•	 Launch vehicle performance – The Energy equation 
or a curve fit to manufacturer performance data 

• Planetary orbital position – Keplerian orbit elements 

• Interplanetary trajectories – Lambert’s Problem 

• ΔV computations – Patched-Conic Approximation 

• PSM derivation – Rocket engine equation 

•	 Optimum case determination – MDO Simplex and 
Matrix Experiment techniques 

Fig.  1: IDFS High-Level Flow Diagram 

2.1.1. Launch Vehicle Performance 
IDFS allows the user to either select one of 12 launch 
vehicles from a database or to input launch vehicle 
performance directly. For the provided launch vehicles, 
performance is modeled using one of two approaches; 
performance curves or the energy equation. 

For those launch vehicles that have published 
performance curves, the Least Squares Fit utility 
provided by MATLAB® is used to derive a second 
order mass to LEO altitude.  These equations provide 
the launch vehicle throw weight, in kg to LEO where 
LEO altitude, h in kilometers, is input by the user. The 
performance as a function of altitude, known as Total 
System Mass (TSM) or mTSM, for 3 of the launch 
vehicles is provided by the Eqns. 1-3 below [4]-[6]. 

mTSM-AtlasV = 21436.632 - 4.638h + 0.00064h2 (1) 

mTSM-Angara5 = 25543.911 - 5.359h + 0.0007h2 (2) 

mTSM-DeltaIV = 25712.256 - 3.546h + 0.00024h2 (3) 

Performance estimates for the remaining launch 
vehicles use the circular orbit velocity equation, (Eq. 
4), the energy equation (Eq. 5), and manufacturer 
performance data.  Once the energy to the reference 
orbit is known, the performance (mTSM) to any low 
Earth orbit can be approximated by assuming E is 
constant, using the user provided altitude h, and Eq. 5 
to derive a result for the total system mass, mTSM. Eq. 
6 shows the result of this derivation. 

v = μearth (rearth + h)  (4) 

E = 
1 mTSM v

2 + mTSM gh  (5) 
2 

2E mTSM = (6) 
v2 + 2gh 

2.1.2. Planetary Position Calculation 
Six Keplerian orbit elements are used to calculate the 
heliocentric radius vector of the Earth and the target 
planet for each Launch Day/Arrival Day pair.  The six 
elements include: 1) Semi-major axis, a; 2) Inclination, 
i; 3) Eccentricity, e; 4) Longitude of the Ascending 
Node, Ω; 5) Longitude of Perihelion, ω~ ; and 6) Mean 
Longitude, L. The J2000 values and change rates per 
day for each of the six elements for all nine planets are 
obtained  from NASA-Goddard’s website [7]. 

To compute planetary position IDFS acquires the 
launch and arrival window dates from the user in the 
Gregorian calendar format.  IDFS converts the launch 



and arrival dates to Julian format and propagates the 
six orbit element values from epoch forward in time. 
Eqns. 7 and 8 calculate the elapsed time since the 
epoch with T1 = launch day at Earth (elements with a 
subscript of 1) and T2 = arrival day at the target 
(elements with a subscript of 2).  Eqns. 9-10 illustrate 
orbit element propagation forward from the epoch. 

T1 = LaunchDay − epoch  (7) 

T2 = ArrivalDay − epoch  (8) 

a1 = (aepoch1 + arate1 )T1 (9) 

a2 = (aepoch2 + arate2 )T2 (10) 

After the Earth and target orbit elements are updated to 
the launch and arrival days, Mean Anomaly, M, 
Eccentric Anomaly, E, and True Anomaly, ν are 
calculated as shown by Eqns. 11-13.  Using True 
Anomaly from Eq. 13, the heliocentric radius vectors 
for earth and the target are computed using Eqn. 14. 
The heliocentric Cartesian coordinates for the planetary 
radius vectors r (rx, ry, and rz) are given by Eqns, 15 – 
17 [8]. Note Eqn. 12 is solved by Newton’s Method. 

M = L −ω~  (11) 

E = E − e sin(E)  (12) 

ν = 2⎜
⎜
⎛ 

a tan⎢
⎡ 
tan⎜

⎛ E 
2 

⎟
⎞ (1+ e) 

(1− e) ⎦
⎥
⎤

⎟
⎠
⎟
⎞ 

 (13) 
⎝ ⎣ ⎝ ⎠ 

⎡ 1− e2 ⎤ 
r = a 

⎢
⎢ 

+ e ( )⎥
⎥  (14) 

⎣1 cos ν ⎦ 

rx = r[cos(Ω)cos(ν + ω~ + Ω) − sin(Ω)sin(ν + ω~ − Ω)cos(i)]  (15) 

~ ~ ry = r[sin(Ω)cos(ν + ω + Ω) + cos(Ω)sin(ν + ω − Ω)cos(i)] (16) 

~ rz = r[sin(ν + ω − Ω) sin(i)]  (17) 

Following Earth and target heliocentric radius vector 
calculation, the heliocentric velocity vectors are found 
for both planets.  The magnitude of the velocity vector 
is determined using Eq. 18.  The result of Eq 18 is used 
in Eqns. 19 – 21 to find the heliocentric x, y, and z 
components of the two velocity vectors [8]. 

V = μ sun ⎜
⎛ 2 

−
1 

⎟
⎞  (18) 

⎝ r a ⎠ 

~ ~ Vx = V [− cos(Ω) sin(ν + ω + Ω) − sin(Ω) cos(ν + ω − Ω) cos(i)] (19) 
~ ~ Vy = V [− sin(Ω) sin(ν + ω + Ω) + cos(Ω) cos(ν + ω − Ω) cos(i)]  (20) 

~Vz = V [cos(ν +ω − Ω) sin(i)]  (21) 

2.1.3. Interplanetary Trajectory Determination 
IDFS utilizes a MATLAB® math model that solves 
Lambert’s Problem to calculate the interplanetary 
trajectories. This approach allows the minimum energy 
trajectory to be found, using time of flight and the two 
planetary positions, even though an infinite number of 
trajectories exist between departure and arrival points. 

IDFS begins at the first day in the launch window and 
calculates the Earth’s position for that day as described 
above.  Similarly, the target’s position is calculated for 
the first day in the arrival window.  Time of Flight 
(ToF) is determined from the elapsed time between 
those two days.  Once the time of flight, tf and the 
departure arrival positions are known, the solution to 
Lambert’s Problem is determined using Lagrange’s 
formulation (Eq. 22), where N is the number of 
revolutions about the sun for the transfer orbit, and α 
and β are defined by Eqns. 23 and 24 [9]. 

3at f = 2Nπ +α − β − ( ( )− sin( )  β )][ sin α  (22) 
μ sun 

ssin( )α =  (23) 
2a 

s − csin( )β =  (24) 
2a 

IDFS implements a modified Battin algorithm to solve 
Lambert’s Problem.  The approach was developed by 
the European Space Agency’s (ESA) Advanced 
Concepts Team (ACT) and is superior to other methods 
in that it avoids the singularity that commonly occurs at 
a transfer angle of 180º [10]. To solve Lambert’s 
Problem by the ACT method, the transfer angle 
θ   the Earth’s and target planet’s position between
vectors is determined as shown by Eq. 25. Once θ is 
known, the chord length of the transfer orbit, c, the 
semi-perimeter length of the transfer orbit, s, and the 
minimum energy semi-major axis length, am, of the 
transfer orbit are all computed using Eqns. 26-28. 
From the results of Eqns. 26-28, the dimensionless 
parameter λ is found by Eq. 29. 

θ = a cos 
⎡
⎢ 

r1x r2x + r1y r2 y + r1z r2z ⎤
⎥  (25) 

⎣ r r⎢ 1 2 ⎥⎦ 

− 2r2 ( )  (26) c = 1 + r2
2 cos θ 



s =
1 + r	2 + c 

 (27) 
2 

am =
s	  (28) 
2 

⎛θ ⎞ cos⎜ ⎟ r2 
λ = ⎝ 2 ⎠  (29) 

s 

Following the determination of θ, c, s, am, and λ the 
transfer orbit solution conic is found using these values 
to solve Eqns. 22-24.  Once a transfer orbit solution is 
found for the unique launch day/arrival day pair the 
Patched Conic Approximation method (see Figure 2) is 
used to calculate the departure and arrival ΔVs. 

In this method, spacecraft motion is simplified by 
assuming only two bodies exist in the problem at any 
point in the transfer orbit.  The fundamental premise of 
the two-body system is that only the spacecraft and the 
celestial body it orbits need be considered since the 
dominating influence on the spacecraft’s motion is the 
celestial body whose “sphere of influence” it is within. 

Using this two-body concept, the velocity of the 
transfer orbit with respect to both the Earth and the 
target, VDepart and VArrive, are determined by finding the 
Lagrange F and G coefficients from Eqns. 32-35 and 
using those results in Eqns. 30 and 31 [8].  Note, P is 
the semi-latus rectum of the transfer ellipse. 

VDepart =
G 
1 (r2 − Fr1 )  (30) 

VArrive = F�r2 + G� VDepart (31) 

F = 1−
r2 [1− cos( )θ ]  (32) 
P 

1 2 sin θ
G =

r r ( )  
 (33) 

μsun P 

μsun ⎡
⎢tan⎛

⎜
θ ⎞

⎟
⎛
⎜⎜
1 − cos( )

−
1 

−
1 ⎞⎟⎟

⎤
⎥  (34) θF� = 

P ⎣⎢	 ⎝ 2 ⎠⎝ P r2 r1 ⎠⎦⎥ 

G� = 1−
r1 [ − ( )1 cos θ ]  (35) 
P 

The methodology developed by ACT and implemented 
in IDFS, overcomes the known singularity problem at 
θ = 180°. The approach provides a generic orbit 
solution to the boundary problem as shown by Eq. 36. 
Using Eq. 23 to find α and substituting the result into 
Eq. 36 yields accurate values of ΔV versus ToF for the 
entire real axis.  This occurs as the method avoids the 
use of Langrage coefficients as required for the 
solution to Eqns. 32-35. However, the algorithm in Eq. 
36 will not converge at θ = 0° as log(0) is 
indeterminate [10]. 

X = log⎢
⎡
1 + cos⎜

⎛ α
⎟
⎞
⎥
⎤ 

(36) 
⎣ ⎝ 2 ⎠⎦ 

2.1.4. Delta Velocity Computation 
Once the departure and arrival velocities are found, the 
required ΔV for each trajectory can be computed. 
IDFS finds these velocities using vector subtraction, as 
shown by Eqns. 37 and 38, to account for both the 
hyperbolic velocity on the transfer ellipse and the 
velocity of the Earth and target planet (see also Fig. 2). 

G	 G G 
VE ∞ = VDepart - VEarth  (37) 
G	 G G 
VT ∞ = VArrive − VTarget  (38) 

Once the transfer orbit velocity of the spacecraft with 
respect to Earth and the target planet are computed, ΔV 
can be found.  In each case ΔV is the difference 
between the spacecraft’s velocity around the planet and 
the velocity of the spacecraft with respect to the planet. 
The circular orbit velocities are found by using the user 
provided orbital altitudes, h, in Eq. 39.  Once the 
orbital velocities are known ΔVDepart, ΔVArrive, and 
ΔVTotal are found from Eqns. 40-42 respectively. 

μPlanet  (39) VOrbit =
h 

ΔVDepart =VE∞ - VLEO  (40) 

ΔVArrive =VT∞ - VLTO  (41) 
Fig.  2: The Patched-Conic Method [11] 



ΔVTotal = ΔVDepart +ΔVArrive (42) 

The ΔVs are then saved for future evaluation and the 
entire process is repeated for the next launch /arrival 
day pair. The next iteration is performed by holding 
the launch day constant and incrementing the arrival 
day until each case in the arrival window is considered. 
Once each arrival day has been used, the launch day is 
incremented and the process is repeated until the ΔVs 
for all possible pairs have been calculated. 

2.1.5. Payload System Mass Calculation 
Payload System Mass (PSM), mPSM, is the mass of the 
“usable” Payload delivered to the target. Propellant 
and Propulsion Subsystem mass are not included in the 
computed PSM. The propellant needed to complete the 
mission is calculated by IDFS while the engine and 
propellant tank mass are found from user inputs. 
Before calculating PSM, the required propellant for 
both the departure and arrival ΔVs must be determined 
using Eq.43 (derived from the rocket engine equation). 

m1 = m0 ⎜
⎜
⎛ 
1− e 

−ΔV 
gIsp 

⎟
⎟
⎞ 

(43) 
⎝ ⎠ 

To find the required departure propellant, mTSM is 
obtained from Eqns. 1-3, 6 or by user input. TSM is 
then substituted into Eq. 43 with specific impulse, Isp, 
obtained as a user input or from the database. The 
result of Eq. 44, mprop-depart yields the propellant 
required to depart Earth. The wet departure mass, mwet­

depart, is then calculated as shown in Eq. 45 with the 
result used in Eq. 46 to compute the propellant required 
to generate the arrival ΔV. 

⎛ −ΔVDepart ⎞ 
m prop−depart = mTSM ⎜⎜

⎜1 − e gIsp 

⎟⎟
⎟ (44) 

⎝ ⎠ 

mwet −depart = mTSM − mprop−depart (45) 

⎛ −ΔVArrive ⎞ 
mprop −arrive = mwet −depart 

⎜
⎜⎜
1 − e gI sp 

⎟⎟
⎟ (46) 

⎝ ⎠ 

Once the mass of the propellant needed to perform the 
arrival ΔV is known, the total arrival mass, mtotal-arrive, is 
obtained utilizing Eq. 47. When the wet arrival mass is 
determined, Eq. 48 is used to calculate the PSM. In 
Eq. 48, the engine mass is again from the database or a 
user input, the propellant tank mass is computed using 
the total propellant mass (Eq. 49), and the propellant 
tank mass fraction, mpmf, is provided by the user.  The 
IDFS default mpmf is 4% based on the propellant mass 

tank fraction of the Space Shuttle’s External Tank and 
the Apollo Command Service Module. 

mtotal−arrive = mwet−depart − mprop−arrive (47) 

mPSM = mwet−arrive − mengine − mtan k (48) 

mtan k = m pmf (m prop−depart + m prop−arrive ) (49) 

2.1.6. Optimum Case Identification 
IDFS allows the user to select from one of six possible 
optimization options. These options include: 1) Find 
maximum PSM; 2) Find minimum ToF; 3) Goalseek 
PSM; 4) Goalseek ToF; 5) Find minimum ToF for a 
specified PSM; and 6) Optimize LEO altitude for 
maximum PSM. In each case, IDFS optimizes only 
within the constraints of the user input parameters. 

2.1.6.1. Find Maximum Payload System Mass 
To find the maximum PSM, IDFS performs a two-step 
optimization process.  IDFS first calculates the arrival, 
departure, and total ΔVs. It then employs the MDO 
Simplex approach to identify the minimum total ΔV, 
(which corresponds to the maximum PSM case). 
When the minimum total ΔV is identified, PSM is 
calculated as discussed above. 

2.1.6.2. Find Minimum Time of Flight 
IDFS identifies the minimum ToF by using the input 
parameters only. The tool merely determines minimum 
ToF by finding the elapsed time between the launch 
window end and the departure window start. The 
associated departure and arrival ΔVs are computed to 
determine the total ΔV for the ToF. Once the total ΔV 
is found, the PSM is calculated. 

2.1.6.3. Goalseek Payload System Mass 
The IDFS Goalseek PSM routine allows the user to 
specify a range of Payload System Masses to be 
delivered to a remote planet. The algorithm evaluates 
the user input parameters to determine if such a goal 
can be met. The goal is found by using the MDO 
Matrix Evaluation technique. IDFS first calculates the 
total ΔV. 

Once the total ΔV is found PSM is determined and 
compared to the PSM goal. If the current PSM is 
within range of the PSM goal, all information 
associated with that launch day/arrival day pair, 
including the ToF, is saved. On subsequent iterations, 
the last saved PSM is compared to the PSM for the 
current launch day/arrival day pair. If the PSM from 
the current iteration is in range and closer to the PSM 



goal than the last saved PSM, the current PSM and its 
related information are saved.  However, if the two 
PSMs are equal, the mission with the shortest ToF, and 
it associated design characteristics, is saved. 

2.1.6.4. Goalseek Time of Flight 
Like the PSM Goalseek, IDFS uses the MDO Matrix 
Evaluation method to find the ToF goal.  Similar to the 
previous optimization techniques, the total ΔV and 
PSM for each launch/arrival day pair is determined. If 
the ToF calculated for the current iteration is within the 
goal range, all launch/arrival day pair data is saved. 

On succeeding iterations, the last saved ToF is 
compared to the current ToF for the launch/arrival day 
pair. If the latest ToF is closer to the ToF goal then the 
saved ToF, it and the related information are saved. 
However, if the two ToFs are equal, then the PSMs are 
compared and the case with the greatest PSM is saved. 

2.1.6.5. Find Minimum ToF for a Given PSM 
Perhaps the most useful IDFS tool for the planning of 
manned interplanetary missions is the Find Minimum 
ToF for a Given PSM optimization routine. IDFS, 
using both the standard set of input parameters and a 
range of acceptable PSMs provided by the user, 
identifies the minimum ToF for the given PSM.   

In a fashion identical to the routines described earlier, 
the total ΔV, PSM, and ToF for the current launch 
/arrival day pair are found.  As before,  if the PSM  
calculated for the current iteration is within the goal 
range, the data associated with that pair is saved. 

On subsequent iterations, the last saved PSM is 
contrasted against the current PSM.  If the current PSM 
is within the specified range and its associated ToF is 
shorter than the saved ToF, then the current iteration’s 
information is saved.  If however, the two ToFs are 
equal, the mission with the greatest PSM is retained. 

2.1.6.6. Optimize LEO for Maximum PSM 
The optimum LEO case is found by first computing the 
maximum PSM, based on the user input mission design 
parameters, at a LEO of 150 km.  LEO is then stepped 
at 50 km increments to an altitude of 1000 km.  At each 
altitude, the maximum PSM is again calculated and 
compared to the previous case. The optimum case is 
identified and data saved and output for that case. 

3. RESULTS 
PSM is of course fundamental to the design of all 
interplanetary missions. That is, the PSM that can be 
delivered to the target planet is essential to the design 

and success of any mission.  All aspects of the mission 
design are affected by this very limited resource. 
Consequently, every mission necessarily seeks to 
optimize PSM so to maximize the benefit. 

Conversely, for crewed space missions, reducing the 
ToF, and thus the overall exposure of the crew to space 
environments, is also a mission design driver.  ToF can 
also drive cost for unmanned missions as longer 
missions require additional mission ground support. 

Unfortunately, the optimum method of shortening ToF 
is to traverse high-energy interplanetary trajectories. 
These high-energy interplanetary trajectories require 
massive propellant loads that consume a large fraction 
of the mass and thus diminish the utility of the mission. 
Further, delivering large propellant loads, even to LEO, 
equates to high launch costs.  Accordingly, minimizing 
the ToF and maximizing the PSM are two goals that 
are diametrically opposed.  This dichotomy of ToF vs. 
PSM for space mission design illustrates the need for 
tools like IDFS to find optimum mission designs.   

The conclusion that PSM and ToF are the two most 
important aspects of mission design shaped the design 
of IDFS. The tool could merely have calculated 
trajectories and ΔVs, but this information is only 
moderately relevant.  Each of the optimization tools 
was developed with the goal of helping the user find 
the best combination of PSM and ToF. 

3.1. IDFS Outputs 
IDFS produces outputs in two forms.  The input trade 
parameters and the results of the trade are provided as 
text in the MATLAB® command window. In addition, 
each IDFS optimization routine generates six plots that 
illustrate the results of the input trade parameter 
analysis. Two example plots are shown in Fig. 3 and 4. 

Each optimization routine echoes the user input 
parameters to the command window so that the user 
can view the values input in conjunction with the 
results. This facilitates iteration of trade parameters. 
Input parameters displayed by IDFS include the launch 
vehicle, target planet, number of launches, aerobrake 
ΔV, launch and arrival windows and window step size, 
LEO and LTO altitudes, rocket engine specifics, and 
propellant tank mass fraction. 

The IDFS MATLAB® command window outputs 
include launch vehicle performance, total, departure, 
and arrival ΔV, optimum mission launch and arrival 
days, PSM and ToF for the optimum case, optimum 
mission transfer angle θ, departure and arrival 
propellant mass, and propulsion system mass.  



Fig. 3: Total ΔV vs. ToF 

Fig. 4:  PSM vs. ToF 

Several indicators of the trade parameter validity can 
be assessed from the tool outputs.  Specifically, a small 
or negative PSM occurs when there are large arrival or 
departure ΔVs or both.  Small PSMs ultimately result 
from a θ not near 180° (a Hohmann transfer).  Small θs 
(less than ~90°) imply launch and arrival windows too 
close together or that, due to the relative motion of the 
planets, the window locations are not optimal.   

Finally, IDFS produces negative PSMs when that result 
is driven by the inputs.  Though negative PSMs do not 
make sense physically, they are provided so that an 
increase in even a negative PSM, suggests to the user 
in which direction to adjust the launch and/or arrival 
windows such that the ToF should move in a direction 
that produces a larger PSM. Note that a negative PSM 
is the result of subtracting the larger Propulsion system 
mass from the smaller resulting PSM (see Eq. 48). 

3.2. Benchmarking 
Benchmarking of IDFS was performed by two separate 
code-to-code comparisons. The first validated IDFS 

planetary position calculations by contrasting the 
results produced by IDFS and JPL’s Horizons website 
[11].  The results in Table 1 show IDFS accurately 
calculates, to 0.1 m, all planetary position vectors.   

A second code-to-code comparison was performed on 
the IDFS ΔV calculations.  This evaluation, whose 
results are provide in Table 2, is based on the output of 
a software model utilized by industry analysts to 
perform first order interplanetary mission trajectory 
design.  As can be seen from the results below, the ΔV 
determined by IDFS is extremely accurate [12]. 

Table 1:  Planetary Position Benchmark 
Radius Mercury Venus 
(km) IDFS JPL % Err IDFS JPL % Err 
Rx 52638550.8 52638550.8 0.0% -54092361.3 -54092361.3 0.0% 
Ry -22688214.2 -22688214.2 0.0% 92784072.7 92784072.7 0.0% 
Rz -6683556.1 -6683556.1 0.0% 4391857.2 4391857.2 0.0% 

Radius Earth Mars 
(km) IDFS JPL % Err IDFS JPL % Err 
Rx 95541839.9 95541839.9 0.0% 103303558.3 103303558.3 0.0% 
Ry -118007885.5 -118007885.5 0.0% -182950046.9 -182950046.9 0.0% 
Rz 2227.6 2227.6 0.0% -6371754.3 -6371754.3 0.0% 

Radius Jupiter Saturn 
(km) IDFS JPL % Err IDFS JPL % Err 
Rx -772138493.7 -772138493.7 0.0% 635076135.5 635076135.5 0.0% 
Ry 243284053.6 243284053.6 0.0% -1355728654.5 -1355728654.5 0.0% 
Rz 16269944.9 16269944.9 0.0% -1671976.7 -1671976.7 0.0% 

Radius Uranus Neptune 
(km) IDFS JPL % Err IDFS JPL % Err 
Rx 2966641523.4 2966641523.4 0.0% 3704547277.0 3704547277.0 0.0% 
Ry -485416521.3 -485416521.3 0.0% -2538175432.8 -2538175432.8 0.0% 
Rz -40136794.8 -40136794.8 0.0% -33237926.6 -33237926.6 0.0% 

Radius 
(km) 

Pluto 
IDFS JPL % Err 

Rx 671955176.4 671955176.4 0.0% 
Ry -4767573386.5 -4767573386.5 0.0% 
Rz 315848193.6 315848193.6 0.0% 

Table 2: ΔV Benchmark 

Item 
Case 1 Case 2 

IDFS LM % Diff IDFS LM % Diff 
Departure ΔV 5.989 5.989 0.00014% 3.839 3.840 0.00055% 
Arrival ΔV 7.839 7.839 0.00000% 2.634 2.634 0.00000% 
Total ΔV 13.828 13.828 0.00006% 6.473 6.473 0.00033% 
TOF (days) 149 149 0.00000% 200 200 0.00000% 
Launch Day 2/8/2018 2/8/2018 3/12/2016 3/12/2016 
Arrival Day 7/7/2018 7/7/2018 9/28/2016 9/28/2016 
Target Mars Mars Mars Mars 
Low Orbit Alt 400 400 400 400 

Item Case 3 Case 4 
IDFS LM % Diff IDFS LM % Diff 

Departure ΔV 10.369 10.369 -0.00009% 6.459 6.459 0.00017% 
Arrival ΔV 10.699 10.699 -0.00006% 10.407 10.407 -0.00002% 
Total ΔV 21.068 21.068 -0.00007% 16.866 16.866 0.00005% 
TOF 289 289 0.00000% 956 956 0.00000% 
Launch Day 12/7/2015 12/7/2015 7/19/2011 7/19/2011 
Arrival Day 9/21/2016 9/21/2016 3/1/2014 3/1/2014 
Target Venus Venus Jupiter Jupiter 
Low Orbit Alt 200 500 300 150000 

4. Trade Study Results 
To provide a use case for IDFS, a detailed trade study 
was conducted to identify the maximum PSM that 
could be delivered to Mars using an Atlas V-552 



launch vehicle, and an RL-10D rocket engine, in the 
2010 to 2020 time frame.   

The trade was conducted holding all input parameters 
fixed except for the launch and arrival windows. 
Starting 1 January 2010, six months launch and arrival 
windows were defined and placed back to back in time. 
IDFS was then run for each window pair sliding by six 
months to the right in each case.  In total, twenty cases 
were run and those with large PSMs were identified. 

Following the initial performance of all twenty cases, 7 
cases were identified for further study.  For those cases 
the results of the initial run where evaluated, the launch 
and arrival windows were refined such that they were 
short and centered on the optimum values from the first 
run, and the step size minimized.  The second round of 
runs identified Case 4b as the optimum solution for the 
trade space.  Trade results are provided in Table 3. 

Trade Parameter/Variable Units Window  4 
Case 4a Case 4b 

Launch Vehicle - Atlas V Heavy Atlas V Heavy 
Target Planet - Mars Mars 
Number of LV launches # 1 1 
Minimum Total ΔV km/s 6.5210 5.7280 
Earth Departure ΔV km/s 3.7693 3.6427 
Total Mars Arrival ΔV km/s 2.7517 2.0853 
Aerobrake ΔV km/s 0.0000 0.0000 
Net Mars Arrival ΔV km/s 2.7517 2.0853 
Launch Window Date 7/1/11-12/31/11 10/1/11-12/31/11 
Launch Window Step Size Days  10  1  
Launch Date Date 11/18/2011 11/13/2011 
Arrival Window Date 1/1/12-6/30/12 5/1/12-7/31/12 
Arrival Window Step Size Days  10  1  
Arrival Date Date 6/19/2012 7/23/2012 
Time of Flight Days 214.0 253.0 
Transfer Angle θ Deg 156.52 178.18 
Low Earth Orbit km 200.0 km 200.0 km 
Low Mars Orbit km 500.0 km 500.0 km 
Total Spacecraft Mass to LEO kg 20534.53 20534.53 
Engine Type - LOX/H2 LOX/H2 

Engine Isp secs 472.0 secs 472.0 secs 
Departure Propellant Mass kg 11436.43 11184.27 
Spacecraft Wet Departure Mass kg 9098.09 9350.26 
Arrival Propellant Mass kg 4076.32 3390.37 
Propellant System Mass kg 802.51 764.99 
Propellant Tank Mass Fraction kg 4.0% 4.0% 
Payload System Mass kg 4219.26 5194.90 

Table 3:  Trade Study Results Summary 

5. CONCLUSIONS 
This study has shown that MDO methodologies can be 
utilized to aid in the interplanetary mission design 
process.  Further, IDFS avoids a known issue with the 
solution to the Lambert Problem by implementing the 
ESA ACT’s improved Battin Method. 

IDFS is an extremely useful and accurate tool that 
identifies optimum interplanetary mission parameters. 
It is easy to operate, provides flexibility to manipulate 
input trade parameters, offers a database on which to 

base input parameters, and delivers a comprehensive 
set of data and graphical outputs to evaluate the results. 
Finally, IDFS demonstrated its utility by quickly 
identifying a possible Earth to Mars mission. 

5.1. Future Enhancements 
Possible future enhancements to IDFS include: 
•	 Aerobrake and ballistic entry software that includes a 

descent ΔV and shield mass calculations  
•	 Change propellant load calculation from impulsive 

thrust to thrust over time so that high specific 
impulse/low thrust engines can be studied 

•	 Provide the ability to calculate mission results using 
direct injection by the launch vehicle 

•	 Allow LEOs other than circular so that departure 
burns can be performed at a transfer orbit apogee 

• Calculate results for an Earth return mission 
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